Is the discussion of free will an illusion?

Biologist Martin Heisenberg writes an article for Nature which purports to address the issue of free will, but ultimately does nothing of the kind.

Heisenberg describes the actual research around which the article is constructed, as follows:

My lab has demonstrated that fruit flies, in situations they have never encountered, can modify their expectations about the consequences of their actions. They can solve problems that no individual fly in the evolutionary history of the species has solved before. Our experiments show that they actively initiate behaviour. Like humans who can paint with their toes, we have found that flies can be made to use several different motor outputs to escape a life-threatening danger or to visually stabilize their orientation in space.

The ‘expectations’ of fruit flies?

Let us be generous, and accept that this term is used metaphorically. The problem with Heisenberg’s article owes far more to the general thrust of the argument, which is merely to claim that animals are capable of adapting their behaviour, that “behavioural output can be independent of sensory input.” Yet, as Heisenberg admits himself, “the idea that animals act only in response to external stimuli has long been abandoned, and it is well established that they initiate behaviour on the basis of their internal states, as we do.” But given that this fact is well-established, it is difficult to see what Heisenberg thinks has been newly discovered in his lab.

Let us accept that Heisenberg’s lab have correctly interpreted their empirical data, and that fruit lies are indeed capable of adapting to their environment. This would constitute a type of learning, but it is difficult to see how this bears upon the issue of free will. Neural networks, for example, are capable of learning, and there is a body of literature which demonstrates that recurrent neural networks can be trained to behave like deterministic finite-state automata (DFA). Fruit-fly learning and subsequent behaviour could be represented by such a neural network, but a neural network that can be trained to behave like a DFA is hardly considered to be the epitome of freely-willed behaviour. Neural networks themselves can be either deterministic or stochastic (i.e., random), but both types of causation are distinct from Heisenberg’s notion of freely-willed behaviour as “self-generated,” (i.e., neither determined, nor random).

If fruit flies are indeed capable of adapting to their environment, then this would be inconsistent with a behaviouristic interpretation of fluit fly behaviour (i.e., an interpretation which denies that fruit flies possess internal states), but it is perfectly consistent with a deterministic interpretation of their behaviour (as well as being quite irrelevant to the issue of free will). Without internal states, there can be no variation in the output response to input stimuli, but with internal states, the response to a stimulus can vary depending upon the internal state, and the internal state can be the result of prior learning.

So Heisenberg’s lab have perhaps found evidence for the existence of internal states in fruit flies, but such a finding is of no relevance to the issue of free will.

Published in: on May 29, 2009 at 10:58 pm  Comments (2)  

Primeval music

The European Space Agency’s Planck satellite is due to launch from French Guiana on May 14th. Pending a successful deployment, Planck will measure the temperature of the cosmic microwave background radiation (CMBR) across the entire celestial sphere, with greater sensitivity and spatial resolution than achieved by its predecessor, NASA’s WMAP satellite. The variations in the temperature of the CMBR reflect variations in the density of matter when the universe was 380,000 years old, at the time of so-called ‘recombination’ when atomic nuclei captured previously free electrons.

New Scientist duly have an article to herald the launch, which claims that “these so-called anisotropies are believed to be due to inflation…During inflation, quantum fluctuations in space-time were extended to cosmological scales: by the time the CMB was released, these fluctuations had led to variations in the distribution of matter across the universe. Denser regions of the universe produced CMB photons slightly colder than average, and vice versa.”

In fact, whilst it is claimed by cosmologists that temperature fluctuations more than a few degrees across are the imprint of fluctuations present at the end of the inflationary period, fluctuations smaller than a degree are believed to be the result of acoustic oscillations in the plasma of baryons, electrons and photons present between the end of inflation and the time of recombination. These small-scale fluctuations are therefore the visible remnant of the earliest sound waves in the universe.

For the large angular-scale fluctuations, the denser regions redshifted the light climbing out of those regions, and therefore produce cooler spots in the CMBR; in contrast, for the small angular-scale fluctuations, denser regions were regions where the plasma was hotter, hence these denser regions produce hotter spots in the CMBR.

Published in: on May 19, 2009 at 6:24 pm  Leave a Comment  

Fluid dynamics of the local stream

The first genuinely warm day of Spring. The Sun opens up the landscape into a buzzing, multi-hued repository of beauty and intricately detailed physical process. The garden is stratified by colour: three blood-red tulips surge vertically against an emerald background of lawn, hedge and tree, themselves shouldering an aquamarine sky.

Taking a walk to the local stream, limitless complexity abounds. Where the flow is shallow, and the bed is pebbly, a series of undulations appear in the surface flow; standing waves perhaps? Fronds of vegetation protrude into the waterway, and small vortices spin off their tips, passing a short distance diagonally down the streamflow. In places, the flow is narrow, and vegetation chokes both sides; here, the vortices cross-hatch the surface.

Some parts of the stream are silent and languid; others tinkle and babble, and here the flow is turbulent. Sudden irregularities and constrictions cause small waves to break, and jets to impact the water, trapping bubbles of air; cavitation creates bubbles of water vapour where the water impacts upon rock and stone; the bubbles oscillate, creating sound waves in the water, which propagate to the surface, and thence transmit to the air as a tranquilising murmur.

Each square metre of this totally unremarkable watercourse, is worthy of its own treatise; each unit area deserves its own magnus opus from a fluid dynamicist.

Published in: on May 2, 2009 at 7:05 pm  Comments (2)