The Standard Model

Whenever I tell a scientist that I did a Philosophy of Physics PhD, the reaction is typically:

What’s that? I didn’t think you could have a philosophy of physics!

After rambling an incoherent reply on several occasions, the pat response I now use is along the lines of:

Well, most physicists want to use physics as a calculational instrument to explain, predict and control the physical world, whereas the philosophy of physics aspires to understand what the physical world actually is.

This is slightly misleading, because the default instrumentalistic philosophy used by physicists, is itself a tenable interpretational position in the philosophy of physics, and many physicists also aspire to understand what the physical world actually is. Nevertheless, as a crass simplification of a blurred distinction, it works quite well, and in fact I purchased a book this week which highlights the dichotomy. The Standard Model: A Primer, by Cliff Burgess and Guy Moore, is a fine book, but it has to be said that it is very much the anti-book to my own book on the Standard Model. If the two books were ever allowed to come into contact, they would mutually annihilate, releasing a humungous amount of energy.

The synopsis of my own book on Amazon asserts that “Rather than presenting the calculational recipes favored in most treatments of the standard model, this text focuses upon the elegant mathematical structures and the foundational concepts of the standard model.” In contrast, the synopsis for Burgess and Moore’s book states that “The book concentrates on getting students to the level of being able to use this theory by doing real calculations.”

Moreover, Burgess and Moore fail to acknowledge any distinction between the first-quantized and the second-quantized Standard Model. This is partially because of Burgess and Moore’s desire to merely equip the reader with calculational competency, but is also a reflection of a general neglect of this distinction within the physics literature. This is a huge loss, because the second-quantized theory is incapable of representing interacting fields with anything else other than a so-called perturbational approach, which treats interactions as brief collisions between particles which approach the state of free particles to the past/future of the interaction. In contrast, the first-quantized Standard Model provides a tractable representation of interacting fields (albeit not an empirically adequate one), and the structure thereof. Derdzinski’s 1992 text, The Geometry of the Standard Model of Elementary Particles, emphasised this point, and my own book is partially an attempt to publicise Derdzinski’s approach.

Alas, I suspect that the message will continue to fall not so much upon deaf ears, as outside the audible range of the physics community.

Gordon McCabe The Standard Model

Published in: on February 2, 2009 at 12:35 am  Leave a Comment  

The URI to TrackBack this entry is:

RSS feed for comments on this post.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: